
1

Recovering Debug 
Information

from
Randomized Code Movement

Steven Neisius, UC Irvine
SoCal PLS, Fall 2013



2

Motivation

* Many projects have applied 
diversity to binaries
* A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz; "Profile-guided Automated Software Diversity,"' in 
2013 International Symposium on Code Generation and Optimization (CGO 2013), Shenzhen, China; February 2013.

* Richard Wartell, Vishwath Mohan, Kevin W. Hamlen, and Zhiqiang Lin. 2012. Binary stirring: self-randomizing 
instruction addresses of legacy x86 binary code. In Proceedings of the 2012 ACM conference on Computer and 
communications security (CCS '12). ACM, New York, NY, USA.

* Etc...

* None have explored crash reporting



3

Diversity In A Nutshell

exploit exploit

Current Practice

App Store

identical App binary 
for all devices

all users 
susceptible to 

identical exploit

Attacker

With Software Diversity

App Store

different App 
variants for different 

devices

a single exploit no 
longer affects all 
mobile devices 

identically

cost to attacker rises 
dramatically

Attacker



5

Code Movement 
Transformations

* NOP Insertion

* Schedule Randomization

* Function Layout

Foo

Instruction A

Instruction B

Bar

Instruction B

Instruction A



6

Code Movement 
Transformations

* NOP Insertion

* Schedule Randomization

* Function Layout

Foo

Instruction A

Instruction B

Bar

Instruction B

Instruction A



7

Code Movement 
Transformations

* NOP Insertion

* Schedule Randomization

* Function Layout

Foo

Instruction A

Instruction B

Bar

Instruction B

Instruction A

NOP



8

Code Movement 
Transformations

* NOP Insertion

* Schedule Randomization

* Function Layout

Foo

Instruction A

Instruction B

NOP

Bar

Instruction B

Instruction A



9

Code Movement 
Transformations

* NOP Insertion

* Schedule Randomization

* Function Layout

Foo

Instruction A

Instruction B

NOP

Bar

Instruction B

Instruction A



10

Code Movement 
Transformations

* NOP Insertion

* Schedule Randomization

* Function Layout

Foo

Instruction A

Instruction B

NOP

Bar

Instruction B

Instruction A



11

Code Movement 
Transformations

* NOP Insertion

* Schedule Randomization

* Function Layout

Foo

Instruction A

Instruction B

NOP

Bar

Instruction B

Instruction A



12

Code Movement 
Transformations

* NOP Insertion

* Schedule Randomization

* Function Layout

Bar

Instruction B

Instruction A

Foo

Instruction A

Instruction B

NOP



13

Crash Reporting



14

Crash Reporting



15

Crash Reporting



16

Crash Reporting



17

Crash Reporting



18

With Diversity



19

With Diversity



20

With Diversity



21

Our Approach



22

Our Approach



23

Our Approach



24

Our Approach



25

Diversified Crash Reporting



26

Normalization Locale

Client

+ Privacy

+ Transparency

- More work

Server

+ Frame info

- More bandwidth

- Modify tracker



27

Normalization Method



28

Results

* Successfully stackwalk a 
diversified crash dump as if it was 
created by the canonical version

* Supports any code movement 
transformation that operates on 
assembly code



29

Future Work

* Optimize mapping time and size

* Mapping for register and stack 
randomization

* Patching and updating



30

Questions?

Thanks!


	Slide 1
	Slide 2
	Slide 3
	page5 (1)
	page5 (2)
	page5 (4)
	page5 (5)
	page5 (6)
	page5 (7)
	page5 (8)
	page6 (1)
	page6 (2)
	page6 (3)
	page6 (4)
	page6 (5)
	page7 (1)
	page7 (2)
	page7 (3)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

