Deoptimization for Dynamic
L anguage JlTs on Typed,
Stack-based Virtual Machines

Madhukar Kedlaya', Behnam Robatmili”, Calin Cascaval’, Ben Har'dekopfI

University of California, Santa Barbara'
Qualcomm Research Silicon Valley2



Votivation

* Implement a performant dynamic language
implementation on a language-level Virtual
Machine (VM).

 VMs like JVM and CLR are attractive targets for
implementing dynamic language runtimes.

* One of the key optimizations is type
specialization.



Type Specialization

 Dynamic languages operate on dynamic values
which are wrapper objects enclosing concrete
values.

=)
2
\
<
Z
\
:

Runtime



Profile based Type
Specialization

if (unbox(variable).type == expected type T) {
T variable’ = unbox(variable)
// fast path: specialized code for type T
// computes the result using variable’
}
else {
// jump to equivalent program point 1in
// unspecilalized code

}

// use result



Deoptimization

Fast optimized code Slow unoptimized code



Deoptimization

Fast optimized code Slow unoptimized code

l Deoptimize

X o1

P2 o



Common Deoptimization Techniques
(that do not work on top of VMs)

* On-stack replacement/Code patching.

* Cannot modify generated bytecode code during
execution.

* Long jumps to unoptimized code.

* Violates bytecode verification rules.



Our Approach

Novel deoptimization approach of code generation
without modifying the underlying VM.

Control transfer —> Exception handling
State transfer —> Bytecode verifier

Deoptimization target is a subroutine threaded
interpreter.



Control Transfer

try {
if (GetType(variable) != ProfiledType) {

/* capture state here */
throw new GuardFailureException(subroutineIndex);

}
/* fast Path */

¥

catch (GuardFailureException e) {
/* capture state here */
SubroutineThreadedInterp(e.subroutineIndex, state);

¥



State of Execution

» state data structure captures the current state of
execution of the function.

* [wo parts.
* Values of local variables.

* Values in operand stack.

10



State Transfer

for (value in operandStack) {
state.stack.enqueue(value);

}

for (variable in localVariables) {
state.variables[variable] = GetValue(variable);

}

11



State Transfer

for (value in operandStack) {
state.stack.enqueue(value);

}

Q: Which engueue method does the runtime call?
engueue(int)?

engueue(string)?

engueue(double)?

A: Depends on the types of values present in the
operand stack.

12



State Transfer

* Bytecode verifier checks type-safety of the
Common Intermediate Language (CIL) code while
generating It.

* Bytecode verifier uses a type stack to track the
types of values in operand stack

e Code generator uses the type stack to generate the
calls to proper enqueue methods at each of the
deoptimization points.

13



Results

Implemented in MCJS, a research JavaScript engine
running on top of Mono 3.2.3.

Benchmarks: Sunspider, V8, and JS1k web
application benchmark suites.

MCJS with deoptimization is on an average 1.18x (up
to 2.6x) tfaster than MCJS with fast path + slow path.

MCJS with deoptimization is on an average 3.18x (up
to 9.9x) faster than IrondS (DLR).

14



